Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136645

RESUMO

The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Ribossomos/metabolismo , Arginina/metabolismo , Membrana Celular/metabolismo
2.
J Biol Chem ; 299(9): 105163, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586589

RESUMO

Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Transporte Proteico , Adaptação Psicológica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo
3.
mBio ; 14(1): e0304022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598193

RESUMO

Metabolic sensing is a crucial prerequisite for cells to adjust their physiology to rapidly changing environments. In bacteria, the response to intra- and extracellular ligands is primarily controlled by transcriptional regulators, which activate or repress gene expression to ensure metabolic acclimation. Translational control, such as ribosomal stalling, can also contribute to cellular acclimation and has been shown to mediate responses to changing intracellular molecules. In the current study, we demonstrate that the cotranslational export of the Rhodobacter capsulatus protein CutF regulates the translation of the downstream cutO-encoded multicopper oxidase CutO in response to extracellular copper (Cu). Our data show that CutF, acting as a Cu sensor, is cotranslationally exported by the signal recognition particle pathway. The binding of Cu to the periplasmically exposed Cu-binding motif of CutF delays its cotranslational export via its C-terminal ribosome stalling-like motif. This allows for the unfolding of an mRNA stem-loop sequence that shields the ribosome-binding site of cutO, which favors its subsequent translation. Bioinformatic analyses reveal that CutF-like proteins are widely distributed in bacteria and are often located upstream of genes involved in transition metal homeostasis. Our overall findings illustrate a highly conserved control mechanism using the cotranslational export of a protein acting as a sensor to integrate the changing availability of extracellular nutrients into metabolic acclimation. IMPORTANCE Metabolite sensing is a fundamental biological process, and the perception of dynamic changes in the extracellular environment is of paramount importance for the survival of organisms. Bacteria usually adjust their metabolisms to changing environments via transcriptional regulation. Here, using Rhodobacter capsulatus, we describe an alternative translational mechanism that controls the bacterial response to the presence of copper, a toxic micronutrient. This mechanism involves a cotranslationally secreted protein that, in the presence of copper, undergoes a process resembling ribosomal stalling. This allows for the unfolding of a downstream mRNA stem-loop and enables the translation of the adjacent Cu-detoxifying multicopper oxidase. Bioinformatic analyses reveal that such proteins are widespread, suggesting that metabolic sensing using ribosome-arrested nascent secreted proteins acting as sensors may be a common strategy for the integration of environmental signals into metabolic adaptations.


Assuntos
Cobre , Oxirredutases , Cobre/metabolismo , Oxirredutases/metabolismo , Sítios de Ligação , Ribossomos/metabolismo , Regulação da Expressão Gênica
4.
Front Microbiol ; 12: 712465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589071

RESUMO

Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.

5.
Front Microbiol ; 12: 720644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566924

RESUMO

Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.

6.
Front Mol Biosci ; 8: 643696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026826

RESUMO

The universally conserved P-loop GTPases control diverse cellular processes, like signal transduction, ribosome assembly, cell motility, and intracellular transport and translation. YchF belongs to the Obg-family of P-loop GTPases and is one of the least characterized member of this family. It is unique because it preferentially hydrolyses ATP rather than GTP, but its physiological role is largely unknown. Studies in different organisms including humans suggest a possible role of YchF in regulating the cellular adaptation to stress conditions. In the current study, we explored the role of YchF in the model organism Escherichia coli. By western blot and promoter fusion experiments, we demonstrate that YchF levels decrease during stress conditions or when cells enter stationary phase. The decline in YchF levels trigger increased stress resistance and cells lacking YchF are resistant to multiple stress conditions, like oxidative stress, replication stress, or translational stress. By in vivo site directed cross-linking we demonstrate that YchF interacts with the translation initiation factor 3 (IF3) and with multiple ribosomal proteins at the surface of the small ribosomal subunit. The absence of YchF enhances the anti-association activity of IF3, stimulates the translation of leaderless mRNAs, and increases the resistance against the endoribonuclease MazF, which generates leaderless mRNAs during stress conditions. In summary, our data identify YchF as a stress-responsive regulator of leaderless mRNA translation.

7.
Nat Commun ; 12(1): 929, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568648

RESUMO

Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc1 (Complex III, CIII2), and may have specific cbb3-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa3-type CIV. Electron transfer between these complexes is mediated by soluble (c2) and membrane-anchored (cy) cyts. Here, we report the structure of an engineered bc1-cbb3 type SC (CIII2CIV, 5.2 Å resolution) and three conformers of native CIII2 (3.3 Å resolution). The SC is active in vivo and in vitro, contains all catalytic subunits and cofactors, and two extra transmembrane helices attributed to cyt cy and the assembly factor CcoH. The cyt cy is integral to SC, its cyt domain is mobile and it conveys electrons to CIV differently than cyt c2. The successful production of a native-like functional SC and determination of its structure illustrate the characteristics of membrane-confined and membrane-external respiratory electron transport pathways in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Microscopia Crioeletrônica , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Engenharia Genética , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
8.
J Tissue Eng Regen Med ; 14(12): 1815-1826, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010108

RESUMO

Regeneration of nerve tissue is a challenging issue in regenerative medicine. Especially, the peripheral nerve defects related to the accidents are one of the leading health problems. For large degeneration of peripheral nerve, nerve grafts are used in order to obtain a connection. These grafts should be biodegradable to prevent second surgical intervention. In order to make more effective nerve tissue engineering materials, nanotechnological improvements were used. Especially, the addition of electrically conductive and biocompatible metallic particles and carbon structures has essential roles in the stimulation of nerves. However, the metabolizing of these structures remains to wonder because of their nondegradable nature. In this study, biodegradable and conductive nerve tissue engineering materials containing zero-valent iron (Fe) nanoparticles were developed and investigated under in vitro conditions. By using electrospinning technique, fibrous mats composed of electrospun poly(ε-caprolactone) (PCL) nanofibers and Fe nanoparticles were obtained. Both electrical conductivity and mechanical properties increased compared with control group that does not contain nanoparticles. Conductivity of PCL/Fe5 and PCL/Fe10 increased to 0.0041 and 0.0152 from 0.0013 Scm-1 , respectively. Cytotoxicity results indicated toxicity for composite mat containing 20% Fe nanoparticles (PCL/Fe20). SH-SY5Y cells were grown on PCL/Fe10 best, which contains 10% Fe nanoparticles. Beta III tubulin staining of dorsal root ganglion neurons seeded on mats revealed higher cell number on PCL/Fe10. This study demonstrated the impact of zero-valent Fe nanoparticles on nerve regeneration. The results showed the efficacy of the conductive nanoparticles, and the amount in the composition has essential roles in the promotion of the neurites.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Nanofibras/química , Tecido Nervoso/fisiologia , Engenharia Tecidual , Tecidos Suporte/química , Animais , Astrócitos/citologia , Adesão Celular , Morte Celular , Condutividade Elétrica , Gânglios Espinais/metabolismo , Humanos , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanofibras/ultraestrutura , Poliésteres/química , Resistência à Tração
9.
Membranes (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962054

RESUMO

Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.

10.
Metallomics ; 12(4): 572-591, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149296

RESUMO

Copper (Cu) is an essential, but toxic, micronutrient for living organisms and cells have developed sophisticated response mechanisms towards both the lack and the excess of Cu in their environments. In this study, we achieved a global view of Cu-responsive changes in the prokaryotic model organism Rhodobacter capsulatus using label-free quantitative differential proteomics. Semi-aerobically grown cells under heterotrophic conditions in minimal medium (∼0.3 µM Cu) were compared with cells supplemented with either 5 µM Cu or with 5 mM of the Cu-chelator bathocuproine sulfonate. Mass spectrometry based bottom-up proteomics of unfractionated cell lysates identified 2430 of the 3632 putative proteins encoded by the genome, producing a robust proteome dataset for R. capsulatus. Use of biological and technical replicates for each growth condition yielded high reproducibility and reliable quantification for 1926 of the identified proteins. Comparison of cells grown under Cu-excess or Cu-depleted conditions to those grown under minimal Cu-sufficient conditions revealed that 75 proteins exhibited statistically significant (p < 0.05) abundance changes, ranging from 2- to 300-fold. A subset of the highly Cu-responsive proteins was orthogonally probed using molecular genetics, validating that several of them were indeed involved in cellular Cu homeostasis.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Homeostase , Proteoma/metabolismo , Proteômica/métodos , Rhodobacter capsulatus/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Quelantes/farmacologia , Cromatografia Líquida/métodos , Análise por Conglomerados , Cobre/farmacologia , Meios de Cultura/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Fenantrolinas/farmacologia , Proteoma/classificação , Proteoma/genética , Rhodobacter capsulatus/efeitos dos fármacos , Rhodobacter capsulatus/genética , Espectrometria de Massas em Tandem/métodos
11.
J Biosci Bioeng ; 124(3): 309-318, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28552194

RESUMO

Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v-1) and gradually increasing (5-11.4%, v v-1) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v-1) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v-1) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization.


Assuntos
Diploide , Evolução Molecular Direcionada , Etanol/metabolismo , Haploidia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Regulação para Baixo , Fermentação/efeitos dos fármacos , Glicólise , Proteômica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
12.
Genome Announc ; 4(3)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284151

RESUMO

The draft genome sequences of two heat-resistant mutant strains, A52 and B41, derived from Rhodobacter capsulatus DSM 1710, and with different hydrogen production levels, are reported here. These sequences may help understand the molecular basis of heat resistance and hydrogen production in R. capsulatus.

13.
Sci Rep ; 5: 8551, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25711343

RESUMO

Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 µm) directly in its emission plane.

14.
Nat Commun ; 4: 1558, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23463001

RESUMO

A Faraday isolator is an electromagnetic non-reciprocal device, a key element in photonics. It is required to shield electromagnetic sources against the effect of back-reflected light, as well as to limit the detrimental effect of back-propagating spontaneous emissions. A common isolator variant, the circulator, is widely used to obtain a complete separation between forward- and backward-propagating waves, thus enabling the realization of a desired transfer function in reflection only. Here we demonstrate a non-reciprocal terahertz Faraday isolator, operating on a bandwidth exceeding one decade of frequency, a necessary requirement to achieve isolation with the (few-cycle) pulses generated by broadband sources. The exploited medium allows a broadband rotation, up to 194°/T, obtained using a SrFe12O19 terahertz-transparent permanent magnet. This in turn enables the design of a stand-alone complete terahertz isolator without resorting to an external magnetic field bias, as opposed to all the optical isolators realized so far.

15.
J Biol Chem ; 283(20): 13973-82, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18343816

RESUMO

Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt c(y)) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-c(y) fusion complex that supported Ps growth solely relying on membrane-confined ET ( Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta 1757, 346-352 ). In this work, we further characterized this cyt bc1-c(y) fusion complex, and used its derivatives with shorter cyt c(y) linkers as "molecular rulers" to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-c(y) fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt c(y) linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt c(y) linker decreased drastically this electronic coupling between the cyt bc1-c(y) fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt c(y) linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-c(y) fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are "hardwired" for cyclic ET.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Rhodobacter capsulatus/metabolismo , Sequência de Aminoácidos , Bioquímica/métodos , Físico-Química/métodos , Elétrons , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Fotossíntese , Potenciometria/métodos , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta/métodos
16.
J Biol Chem ; 283(20): 13964-72, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18343817

RESUMO

Photosynthetic (Ps) electron transport pathways often contain multiple electron carriers with overlapping functions. Here we focus on two c-type cytochromes (cyt) in facultative phototrophic bacteria of the Rhodobacter genus: the diffusible cyt c2 and the membrane-anchored cyt c(y). In species like R. capsulatus, cyt c(y) functions in both Ps and respiratory electron transport chains, whereas in other species like R. sphaeroides, it does so only in respiration. The molecular bases of this difference was investigated by producing a soluble variant of cyt c(y) (S-c(y)), by fusing genetically the cyt c2 signal sequence to the cyt c domain of cyt c(y). This novel electron carrier was unable to support the Ps growth of R. capsulatus. However, strains harboring cyt S-c(y) regained Ps growth ability by acquiring mutations in its cyt c domain. They produced cyt S-c(y) variants at amounts comparable with that of cyt c2, and conferred Ps growth. Chemical titration indicated that the redox midpoint potential of cyt S-c(y) was about 340 mV, similar to that of cyts c2 or c(y). Remarkably, electron transfer kinetics from the cyt bc1 complex to the photochemical reaction center (RC) mediated by cyt S-c(y) was distinct from those seen with the cyt c2 or cyt c(y). The kinetics exhibited a pronounced slow phase, suggesting that cyt S-c(y) interacted with the RC less tightly than cyt c2. Comparison of structural models of cyts c2 and S-c(y) revealed that several of the amino acid residues implicated in long-range electrostatic interactions promoting binding of cyt c2 to the RC are not conserved in cyt c(y), whereas those supporting short-range hydrophobic interactions are conserved. These findings indicated that attaching electron carrier cytochromes to the membrane allowed them to weaken their interactions with their partners so that they could accommodate more rapid multiple turnovers.


Assuntos
Grupo dos Citocromos c/metabolismo , Elétrons , Fotossíntese , Rhodobacter capsulatus/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biofísica/métodos , Cinética , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Oxirredução , Oxigênio/química , Homologia de Sequência de Aminoácidos , Eletricidade Estática
17.
Biochim Biophys Acta ; 1757(5-6): 346-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16781662

RESUMO

The membrane integral ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductase (or the cyt bc1 complex) and its physiological electron acceptor, the membrane-anchored cytochrome cy (cyt cy), are discrete components of photosynthetic and respiratory electron transport chains of purple non-sulfur, facultative phototrophic bacteria of Rhodobacter species. In Rhodobacter capsulatus, it has been observed previously that, depending on the growth condition, absence of the cyt bc1 complex is often correlated with a similar lack of cyt cy (Jenney, F. E., et al. (1994) Biochemistry 33, 2496-2502), as if these two membrane integral components form a non-transient larger structure. To probe whether such a structural super complex can exist in photosynthetic or respiratory membranes, we attempted to genetically fuse cyt cy to the cyt bc1 complex. Here, we report successful production, and initial characterization, of a functional cyt bc1-cy fusion complex that supports photosynthetic growth of an appropriate R. capsulatus mutant strain. The three-subunit cyt bc1-cy fusion complex has an unprecedented bis-heme cyt c1-cy subunit instead of the native mono-heme cyt c1, is efficiently matured and assembled, and can sustain cyclic electron transfer in situ. The remarkable ability of R. capsulatus cells to produce a cyt bc1-cy fusion complex supports the notion that structural super complexes between photosynthetic or respiratory components occur to ensure efficient cellular energy production.


Assuntos
Grupo dos Citocromos c/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Rhodobacter capsulatus/enzimologia , Membrana Celular/enzimologia , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/isolamento & purificação , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Cinética , Luz , Oxirredução , Fotossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/fisiologia , Rhodobacter capsulatus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...